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ABSTRACT
A major component of secondary education is learning to write
effectively, a skill which is bolstered by repeated practice with
formative guidance. However, providing focused feedback to every
student on multiple drafts of each essay throughout the school year
is a challenge for even the most dedicated of teachers. This paper
first establishes a new ordinal essay scoring model and its state of
the art performance compared to recent results in the Automated
Essay Scoring field. Extending this model, we describe a method for
using prediction on realistic essay variants to give rubric-specific
formative feedback to writers. This method is used in Revision
Assistant, a deployed data-driven educational product that provides
immediate, rubric-specific, sentence-level feedback to students to
supplement teacher guidance. We present initial evaluations of this
feedback generation, both offline and in deployment.

1 INTRODUCTION
Writing, though central to education, is labor intensive to assess.
Teachers must balance giving students iterative practice and feed-
back with their own available time. As a result, Automated Writing
Evaluation (AWE) tools have been a focus in industry and research
for decades. Much of the existing work has been directed toward
scoring over feedback, often for efficiency in high volume scoring
applications such as testing. Nevertheless, there has been a persis-
tent recognition that providing formative feedback is an essential
goal for comprehensive automated tools [10, 23, 27].

We present the modeling framework that powers Revision As-
sistant, an educational tool for providing sentence-level, rubric-
specific, formative feedback to students during the revision process.
As shown in figure 1, Revision Assistant provides students with
predicted scores on multiple rubric traits and highlights several
sentences with trait specific suggestions or encouragement.

Though essay scoring is a well defined supervised learning task,
there is no ground truth for feedback. There are many plausibly
useful sets of feedback that could be given on a particular essay and
no established evaluation criteria. We therefore frame the feedback
problem as one of prediction on realistic essay variants, to identify
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regions in which revisions may have an impact on predicted scores.
We find that a regularized ordinal logistic regression scoring model
meets the demands of this extension of prediction to feedback,
while still maintaining state of the art performance on scoring.

In Section 2 we introduce the problem of Automated Essay Scor-
ing (AES) and position our approach among others used in academia
and industry. Section 3 describes the way in which we use these
models to select sentences for feedback, grounding this approach in
pedagogical theory and practice. We then discuss how the standard
assumptions and evaluation methods of predictive modeling shift
for feedback generation. Section 4 outlines the deployment of our
scoring and feedback system to hundreds of thousands of students.
We conclude with a discussion of next steps and open questions in
this area.

2 AUTOMATED ESSAY SCORING
Scoring models are featured explicitly in Revision Assistant, and
also provide the foundation for feedback. Here we describe the task
of supervised prediction of essay scores with respect to a given
prompt and rubric.

2.1 Problem definition and existing work
In 1966 Ellis Page developed Project Essay Grade (PEG), kicking
off 50 years of research into AES [21]. Methodology and computa-
tional power have advanced substantially, but the task has remained
largely consistent. In traditional non-automated, large-scale essay
scoring, two trained experts typically score each essay. A third
expert resolves disagreements between them. The task of an AES
system is to use scores from this traditional scoring process to train
models that can score new essays as reliably as any individual rater.

The AES field grew out of a need to replicate the work of expert
essay readers, and many approaches try to directly incorporate
insights from those experts. Many systems, including Ellis’s PEG,
ETS’s e-rater, and more, focus on feature engineering. They create
a small to moderate number of expert-designed features meant to
represent high level characteristics of writing [6, 7, 19, 21]. These
may include measures such as coherence or lexical sophistication
[32]. The connection between the constructs used by human experts
and the AES system is generally emphasized as a central feature.

In contrast, an increasing body of work attempts to avoid la-
borious feature engineering by using large numbers of low-level
textual features [22] or neural network derived word or paragraph
embeddings [2, 29]. These systems use high dimensional modeling
techniques, and relax the constraint that model features should
mimic human reasoning. We use this approach, demonstrating
with our feedback system that expert derived features are not re-
quired for interpretable output. Our results in this area are parallel
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Figure 1: An example of Revision Assistant in use. The signal bars at the top of the draft indicate predicted scores on four
rubric traits. Highlighted sentences give targeted feedback to the student on strengths and weaknesses tied to the traits.

to recent work in the deep learning domain on creating textual
rationales for network predictions [16].

Academic AES research has been dominated for the last five
years by the dataset from the 2012 Automated Student Assessment
Prize (ASAP) competition 1. This competition used essays written
to eight prompts, scored on a variety of scales. The competition
had a private phase with companies as competitors, followed by
a public Kaggle competition with anonymized data. [26] provides
a summary of the competition, and most recent research papers
report their results using the same public dataset [2, 9, 11, 22, 29].

Essay scoring is commonly framed as a regression problem,
despite the fact that scoring ranges are bounded integer scales
[2, 7, 11, 21, 22, 29]. This approach is powerful when the score
range is large, better approximating a continuous response, as is
the case in several of the ASAP datasets. However, many rubrics,
including those used in Revision Assistant, use a much smaller
scale where regression may not be appropriate. Other work frames
essay scoring as a classification problem [25]. This is perhaps better
suited to a response variable with a small number of discrete scores,
but loses any acknowledgement of the ordering of the scoring scale.
We introduce here an AES system using ordinal logistic regression,
accurately modeling the essay scores as both ordered and discrete.

2.2 Data and hand-scoring
We use two datasets in this paper. The first is the ASAP competition
public data. Details of this dataset are available on the competition
website, and in [26]. We use this data to compare our algorithms
to recent literature using the same task. We omit the eighth ASAP
dataset due to its very large scoring range, which is poorly suited

1https://www.kaggle.com/c/asap-aes

to our modeling approaches. Table 2 includes summary statistics of
the ASAP data.

The second dataset is a sample of 9 prompts available in Revision
Assistant. This dataset includes double-scored training essays, as
well as usage data from the deployed system. The prompts cover a
range of genres and grade bands, with most essays being between
200 and 700 words. Table 3 provides summary statistics for this
dataset. A list of the prompts and rubrics currently used in Revision
Assistant is available in the online documentation 2.

A professional scoring vendor evaluated between 280 and 1000
essays per Revision Assistant prompt. Each essay received scores
from two expert raters, with disagreements resolved by a third. The
scores ranged from 1 to 4 for each trait, and all of these prompts
were scored on four rubric-specificwriting traits. Examples of rubric
traits include Use of Evidence, Clarity, and Organization. Table 1
shows agreement measures for the expert raters on the Revision As-
sistant datasets. Agreement varies, but is generally between 0.6 and
0.8 Quadratic Weighted Kappa (see section 2.6). Note that around 10
raters worked on each prompt, so the measurement of agreement
is between two arbitrary raters, not any specific individuals.

In general, intermediate scores of 2 and 3 are far more common
than the extreme scores of 1 or 4. In addition, the resolution process
tends to pull scores toward the center. This is a common pattern
in our dual-rater scoring, but often results in the extreme scores
being underrepresented and training sets being very imbalanced. To
combat this in practice, we include essays in our training sets with
the extreme scores if at least one rater scored them as such. When
incorporating a new prompt into Revision Assistant, we evaluate
the models with and without this process, against both original and
modified scores. We work with the modified training sets in this
paper to match what Revision Assistant uses in practice.
2https://guides.turnitin.com/Revision_Assistant/Prompt_Library
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Trait QWKs Score Types Score Dist (%)
T1 T2 T3 T4 Res Ext 1 2 3 4

P1 0.62 0.62 0.63 0.59 457 0 3 37 52 8
P2 0.62 0.71 0.71 0.72 945 98 7 61 25 7
P3 0.71 0.70 0.68 0.71 359 40 6 39 44 12
P4 0.70 0.69 0.64 0.62 706 48 6 41 45 7
P5 0.74 0.74 0.74 0.71 578 80 28 43 25 5
P6 0.60 0.68 0.67 0.61 490 0 5 43 43 9
P7 0.72 0.60 0.71 0.59 216 64 14 40 31 15
P8 0.79 0.79 0.78 0.78 264 61 13 29 30 29
P9 0.67 0.67 0.62 0.62 643 126 6 40 41 12

Table 1: Hand scoring QWKs indicate the agreement be-
tween the original raters. Score Types indicate howmany es-
says used theResolved or Extreme scores in our training sets.
Score Dist gives the percentage of essays with each score.

2.3 Feature space
We take the approach of using large numbers of low-level textual
features to represent essays. These features are simple to compute
and easy to use in a variety of models. Included in the feature space
are counts and binary occurrence indicators of word unigrams,
bigrams and trigrams, character four-grams, and part of speech
(POS) bigrams and trigrams. We use the Stanford part of speech
tagger to generate POS features [30]. This feature space is generally
quite large, with several orders of magnitude more features than
scored essays. All of our models first remove extremely rare features
and then use some form of model regularization to fit models in
the face of large feature spaces.

In models with joint parameter estimation, we also include essay
length as a predictor. It is generally the case that essay scores are
strongly correlated with length. This is not surprising, as evaluation
criteria such as inclusion of evidence and examples are difficult to
achieve in shorter texts. Many AES systems choose not to include
length as a predictor, as it is not in and of itself something that
experts wish to evaluate. However, so many common features in
models (such as counts of common words or parts of speech se-
quences) are proxies for length that its exclusion from a model is
largely symbolic. We will argue in Section 3.3 that including and
isolating essay length as an explicit model parameter strengthens
feedback.

In addition to the scored essays for each prompt, we also use an
unscored collection of thousands of essays collected from students
using Revision Assistant in classrooms. This extra unsupervised
data is used to inform rare feature removal, and to provide the basis
for our off-topic essay detection mentioned in section 4. Future
work in semi-supervised modeling may be able to make even more
use of this data.

2.4 Baseline models
Wepresent two simplemodels as baselines on the RevisionAssistant
data: a length-only classifier, and Naive Bayes using a comparable
feature set to our proposed ordinal model. As demonstrated in table
2, our Naive Bayes baseline is already competitive with results from
other researchers on the public datasets we evaluate.

2.4.1 Length Only (LEN). This baseline addresses the correlation
between essay length and score. The model is a logistic regression
classifier with a single predictor, namely the character length of
the essay. This model has widely varying performance. In a few
instances, the expert raters’ scores are so closely correlated with
length that length on its own is as effective as more sophisticated
models. However, in the vast majority of cases, the length-only
model under-performs other models.

2.4.2 Naive Bayes (NB). Our second baseline is a Naive Bayes
model. The model uses binary features indicating the presence of
word, character, and part of speech n-grams. We remove features
that occur in fewer than 10 training set essays, and then use a
cross-validated grid search to select a subset of this feature space,
selecting 1000 to 5000 features using χ2 feature selection. This base-
line performs well and is quick to train. However, the independence
assumption that makes it efficient also leads to poor probabilistic
calibration which makes it less suited for generating feedback, as
we will discuss in section 4.2.

2.5 Ordinal logistic regression (OLR)
Though most AES systems, including our baselines, treat score pre-
diction as a classification or linear regression problem, the response
variable is actually ordinal. Because of the small, discrete, range of
possible scores, a linear regression approach will suffer from vio-
lations of modeling assumptions. A classification approach treats
each score as an independent category, losing ordering information.

Ordinal logistic regression (OLR) accounts both for the categori-
cal nature of the scores and their ordering. We use the continuation
odds ratio ordinal logistic regression model [1]. This model esti-
mates the conditional probabilities of an essay receiving a particular
score given that it scores at least that high. For an essay Y and score
k , x is the feature vector of essay Y , and

loдit (P (Y = k |Y ≥ k )) = αk + β
T x. (1)

Since the parameter vector β does not depend on k , the model in
equation 1 makes a proportional odds assumption. Though there is
a separate intercept term αk for each score point, the impact of the
essay features on the odds of crossing each threshold is the same. As
in [8], it is possible to relax this assumption by estimating separate
parameter vectors βk for some k . We do so for the thresholds at the
ends of the scoring scale, such that our model is

loдit (P (Y = k |Y ≥ k )) = αk + β
T x +

[
βTt1x · Ik=1

]
+
[
βTt3x · Ik=3

]

(2)
The features we use in the OLR model include essay length,

counts of word, character, and POS n-grams, and binary indicators
of the same n-grams. This is a very large feature space, requiring
regularization to fit the logistic model. As described in [4, 8], the
likelihood for this model can be factored into K − 1 independent
likelihoods estimated simultaneously using an expanded X matrix.
Because of the large feature space, we use Elastic Net regularization,
with the regularization parameters chosen through a grid search.

2.6 Model performance
The Revision Assistant dataset is constrained by privacy require-
ments and cannot be made public. As validation that our score



predictions are competitive with current research, we tested our
scoring algorithms on the publicly available ASAP dataset. Table 2
shows these results, compared against recently published results
(the neural network approach of [29], and the Bayesian linear ridge
regression and SVM approaches of [22], and the Timed Aggregate
Perceptron approach of [9]). We see from these results that our
OLR classification approach suffers when grading essays on large
scoring ranges (ASAP 1, 7), but performs as the state of the art on
prompts more similar to the Revision Assistant use case.

Scores for all evaluations are reported as Quadratic Weighted
Kappa (QWK), a standard measurement in the AES field.

QWK = 1 −

∑K
i=1
∑K
j=1wi joi j∑K

i=1
∑K
j=1wi jei j

(3)

where o is the observed confusion matrix between true and pre-
dicted scores, and e is the expected matrix given random draws
from the empirical distributions of predicted and true scores. The
weight matrixw is given bywi j = (i − j )2/(K − 1)2.

Set Essays Scores SVM BLRR TAP NN NB OLR
1 1783 2-12 0.78 0.76 0.82 0.82 0.79 0.77
2 1800 1-6 0.62 0.61 0.67 0.69 0.71 0.71
3 1726 0-3 0.63 0.62 0.64 0.69 0.71 0.70
4 1772 0-3 0.75 0.74 0.79 0.81 0.79 0.81
5 1805 0-4 0.78 0.78 0.78 0.81 0.79 0.82
6 1800 0-4 0.77 0.78 0.77 0.82 0.78 0.83
7 1569 0-30 0.73 0.73 0.73 0.81 0.78 0.63

Table 2: QWK performance on the public ASAP prompts
show that our OLR model achieves state of the art predic-
tive performance. SVM and BLRR are from [22], TAP is the
approach of [9], and NN is the CNN+LSTM approach in [29].
NB and OLR are our baseline (Naive Bayes) and ordinalmod-
els. For consistency with cited papers, we evaluated all mod-
els on the ASAP data using 5-fold CV, though the folds them-
selves are not identical to the referenced works.

Table 3 shows the performance of our baseline and OLR models
on the 9 Revision Assistant datasets, evaluated in 10-fold cross
validation with consistent folds across models. We see that OLR
is frequently the best performer, though the NB baseline is quite
strong. By comparing with Table 1 we see that OLR usually gets
higher QWK, relative to the training data, than two expert raters
get between themselves. This is a common baseline in the AES field,
but the comparison is somewhat flawed. The model QWKs measure
agreement with the final scores which are, by design of the scoring
process, less variable than an individual’s scores. In contrast, the
inter-rater QWKs compare two individuals. A better comparison
would be the QWK achieved between two complete iterations of
the scoring process, but we do not currently have that data.

We observe that the QWK of the length baseline is always below
that of our OLR and NB models, but can reach nearly 0.8. This
length correlation with score is unavoidable. However, especially
as we want our scoring models to help drive feedback, it is im-
portant to ensure we are learning something about essay scoring
beyond length. The fact that our models universally outperform

the length-only baseline provides some assurance. Furthermore, in
experiments outside the scope of this paper, we have found that
predicted distributions from OLR can often differentiate between
higher and lower scoring essays even when evaluating only a con-
strained 250-word beginning of each essay.

2.7 Practical considerations for deployment
High performing predictive models can be trained with several
hundred scored essays. However, it is essential to acknowledge
the sampling methodology used to collect the training data, and
how that reflects the population using the AWE system. Frequently,
initial training sets for prompts are easiest to collect from a single
school or district. When we deploy such models more broadly, we
are careful to monitor their performance for unexpected patterns.
We often collect additional data from our user base and get it scored
by experts, supplementing the original training data. We believe
it to be important to treat scoring models as living algorithms,
needing maintenance to stay at their best performance.

In practice, we consider a more diverse set of metrics than the
QWK values presented here. The distribution and type of errors,
(im)balance of score points in the training data, diversity of the
training set, relative performance of the models for a prompt’s
several traits, and patterns of scoring of the new model on any
previously submitted essays are all important.

3 FROM PREDICTIVE MODELS TO
ESSAY FEEDBACK

Automated scoring brings value to the classroom in the form of
whole-essay summative assessment. However, targeted formative
feedback is vital to the development of writing proficiency [23, 28].
Research in writing education demonstrates that localized, action-
able feedback, presented as part of an iterative writing process, is
effective [14, 17]. By connecting comments to the rubric’s evalua-
tion criteria, students can use the feedback to foster their ability to
reflect and self-assess [18, 20]. Self-reported responses to teacher
feedback confirm that students value a combination of positive
and critical comments that are specific to their own writing, and
connected to the evaluation criteria [31]. Such feedback is espe-
cially valuable on preliminary drafts, instead of later in the writing
process [13]. Even the most dedicated instructor would struggle to
provide a set of high-quality targeted comments on every draft of
every student’s essay, for every prompt they assign throughout the
year. However, it would be a mistake to consider only the labor-
saving implications of AWE. Classroom observations of Revision
Assistant suggest that automated essay feedback allows the teacher
to step back from the sometimes-adversarial red pen and engage
with their class as guides and readers, modeling the interpretation
of feedback alongside their students.

Revision Assistant provides sentence-level formative feedback
tied to the rubric traits for each draft a student submits. As described
in the next section, the scoring models directly drive the selection
of feedback targets. While the feedback text is authored by content
experts, we require no specialized annotation at the sentence or
phrase level, and no manual feature engineering to select comment-
worthy sentences for each trait.



Trait 1 Trait 2 Trait 3 Trait 4
Genre Grade Len Scored Extra OLR NB LEN OLR NB LEN OLR NB LEN OLR NB LEN

P1 Analysis 11-12 382 457 1096 0.76 0.67 0.47 0.72 0.67 0.47 0.69 0.60 0.21 0.62 0.61 0.23
P2 Argument 6-8 263 999 1183 0.82 0.78 0.57 0.80 0.76 0.58 0.78 0.80 0.51 0.74 0.75 0.54
P3 Argument 9-12 387 399 548 0.76 0.72 0.65 0.76 0.76 0.64 0.76 0.75 0.64 0.71 0.71 0.49
P4 Argument 11-12 382 755 940 0.77 0.75 0.65 0.77 0.73 0.64 0.75 0.72 0.62 0.72 0.69 0.55
P5 Informative 7-8 294 634 3497 0.67 0.59 0.57 0.64 0.61 0.60 0.63 0.56 0.59 0.59 0.50 0.52
P6 Informative 9-10 359 493 930 0.80 0.77 0.64 0.79 0.76 0.64 0.73 0.69 0.64 0.73 0.71 0.57
P7 Informative 11-12 410 280 14 0.78 0.79 0.64 0.78 0.77 0.69 0.75 0.74 0.70 0.70 0.69 0.65
P8 Narrative 6-6 301 283 377 0.84 0.84 0.77 0.82 0.84 0.77 0.81 0.84 0.77 0.78 0.79 0.75
P9 Narrative 11-12 455 695 260 0.69 0.68 0.47 0.67 0.69 0.48 0.67 0.63 0.53 0.63 0.59 0.18

Table 3: QWK performance on Revision Assistant datasets. Each row is a prompt. Prompts are scored on various 4-trait rubrics.
OLR is our ordinal logistic regression model. NB and LEN are our Naive Bayes and length-only baseline models.

3.1 Existing work
Several other AWE systems include automated scoring alongside
some kind of specific feedback. In many cases, that feedback is not
directly driven by the scoring algorithms themselves. For instance,
ETS Criterion uses the scoring models from its e-rater system, but
provides the student with feedback based on a series of separate al-
gorithms that detect usage and mechanics errors, particular aspects
of style (e.g. passive voice), and detection of discourse elements
[5]. Writing Pal is an intelligent tutoring system that scaffolds writ-
ing and feedback within learning tasks [24]. Its automated holistic
feedback targets student writing strategies. However, it too uses
highly engineered essay features and a series of algorithms for each
feedback type, divorced from the scoring model itself.

More similarly to our approach, Andersen et al. [3] describe
a system to give model-driven sentence-level feedback focused
on mechanics and usage. However, their models require sentence
level annotations of grammatical errors. The authors assign pseudo
scores to the sentences based on the whole essay score and the
count of errors within the sentence. They train a model directly on
these sentence-level scores, using it to predict the score of a new
sentence. For our rubrics, obtaining sentence-level annotations for
multiple rubric traits is prohibitively costly, even discounting the
work of creating a validated and usable annotation guide.

Outside of the essay evaluation domain, there has been a recent
surge of interest in generating rationales for the predictions of oth-
erwise opaque systems such as deep neural networks. For instance,
[16] describes a system for generating rationales for text catego-
rization by finding small segments of target texts that still receive
the same categorization. Our problem has a different framing, as
we wish to identify both strong and weak components of a text, but
is similar in spirit to this type of work.

3.2 Problem definition
Many components contribute to the student writing and feedback
experience in Revision Assistant, most of which are beyond the
scope of this paper. Here we address a particular part of the feedback
process, namely selecting influential sentences to highlight.

When a student requests feedback, their draft is sent to our scor-
ing models (one per rubric trait). The student receives the predicted
scores in a visual and friendly format, mimicking wifi signals. In

addition, we submit a series of modified versions of the essay to
the models to estimate the influence that each modification has on
the essay’s score. Our modifications are at the sentence level, such
that for each sentence we estimate a polarity (strong/weak) and
magnitude of influence over each trait. We then select up to four of
these sentences, optimizing for magnitude of influence against sev-
eral constraints, and match these sentences to comments using the
polarity, trait, essay score, and characteristics of the sentence and
the essay. We present the feedback to the student by highlighting
sentences as shown in Figure 1.

3.3 Essay modifications
Revising an essay is a process of incrementally altering the text
to better match the demands of the prompt and rubric. To provide
formative feedback to a student, we want to know which potential
modifications to an essay will change the essay’s score for the better,
and guide the student to those revisions.

Our scoring models are certainly not causal, so we cannot di-
rectly look for modifications of the feature space (such as increasing
the count of a particular n-gram) that would change the essay’s
score. Those feature edits would almost certainly correspond to
unrealistic alterations in the English text, violating un-modeled
linguistic structure. We also need to map the edit under considera-
tion onto concrete suggestions to the student, who does not reason
in n-grams. Instead, we first generate realistic edited versions of
the essay and then ask how those edits alter the predicted score.
Specifically, we look at versions of the essay where individual sen-
tences have been omitted. If omitting a particular sentence has
a particularly detrimental impact on the essay’s score on a trait,
that sentence is strong for that trait. Conversely, if removing a
sentence actually improves the score, that sentence is weak. This
simplification is a useful conceit for reasoning about texts through
probability distributions, and is elaborated on in the next section.

The quality and types of feedback that these models can select is
directly tied to the essay variants considered. Here we use sentence
removal to generate variants, which is quite easy to implement.
Recent research into revision extraction and classification [33] may
offer a useful avenue for modeling and reasoning about actual
revision practices in our growing corpus of student drafts.

Creating variants through removing sentences means that essay
variants may be quite different in total length. We know that length



Figure 2:
(a) Theoretical representation of influence between ∆hiдh and ∆low . The shaded region indicates a background distribution.
(b) Background distributions of essay modifications in influence space with real data across four score points on a single trait.

is strongly correlated with essay scores, and this is invariably cap-
tured in supervised models. However, this can be an inaccurate
inference at the sentence level. In an earlier iteration of our feed-
back system, using the NB algorithm, this property invariably led
to very long sentences being identified as strong, and very short
sentences as weak. In our current system, we include length as a
feature in the OLR model and then artificially hold that feature
constant between the essay variants. Since the parameters of the
OLR model are jointly estimated, the remaining non-length fea-
tures more accurately describe other components of strong or weak
writing. We no longer observe the same overwhelming length effect
on feedback.

3.4 Influence Space
Consider an essay e , represented by feature vector x. Now consider
one of a set of edits d ∈ D, which can be applied to an essay to
change its text and therefore its feature representation. d (x) = x′.
We also have a predictive model M that, given a feature vector
will return a predicted score distribution over the possible scores,
M (x) = [Pr (1), Pr (2), Pr (3), Pr (4)]. The arдmax of this distribu-
tion is the predicted score s∗. The difference between M (x) and
M (x′) can be expressed by two numbers: the change in total prob-
ability mass on scores lower than s∗, and the change in total proba-
bility mass on scores higher than s∗. Call these numbers ∆low and
∆hiдh , respectively. When ∆low is positive, for instance, the edit
increased the probability of lower scores, decreasing the predicted
quality of the essay.

We compute one (∆low ,∆hiдh ) pair for each sentence, repre-
senting the sentence’s contribution to the essay score distribution.

This generates a set of two-dimensional points in what we will
call influence space. Note that there are many ways that the shape
of the distribution can change betweenM (x) andM (x’). This 2D
projection captures the patterns we are most interested in while
remaining simple enough to reason about.

Given this definition of influence space, we could declare that
the distance from the origin represents the influence of a sentence,
and the direction indicates the polarity of that influence. However,
most sentences are better than nothing and have positive ∆low and
negative ∆hiдh . That is, we expect that an arbitrary sentence will
have a location in influence space somewhere in the lower right
quadrant. Such a location does not indicate that the sentence is
unusually influential.

To account for this expected influence of an arbitrary sentence,
we use the influence space distributions of a large set of (potentially
unscored) essays as a background distribution. When considering a
new essay, we compare the influence space location of its sentences
to this background distribution using Mahalanobis distance. We
use this distance, rather than the distance from the origin, as the
influence of the sentence. The direction of the point from the mean
of the background distribution is its polarity.

Figure 2a shows an abstraction of influence space and a back-
ground distribution, with various regions labeled. Sentences in
region B are more positively influential than the average sentence.
These are sentences that are candidates for positive comments.
Sentences in region C actually improve the essay by being absent.
These are clear candidates for negative polarity comments. Sen-
tences in region A contribute positively to the essay, but less than
would be expected from an arbitrary sentence. We also treat these



as candidates for negative polarity comments. Sentences in regions
D,E,F, and G either flatten or increase the peakiness of the predicted
distribution. These could be candidates for specialized comments
but are not currently deployed in Revision Assistant.

Figure 2b shows influence space plots for sentences in an au-
thentic Revision Assistant data set. Each essay generates one point
in the influence space per sentence it contains. Note that the dis-
tributions for 1 and 4 scores are degenerate, as it is not possible
to receive lower or higher scores. In these cases, the background
distribution flattens to a one-dimensional space in which A, B, and
C are the only possible regions.

4 DEPLOYING AND EVALUATING FEEDBACK
The OLR based influence estimation system is deployed in Revision
Assistant. We study a limited selection of live user data captured
between October 2016 and May 2017. In this period, over 79,000
students used Revision Assistant. We evaluated an average of over
4,500 essay drafts per school day.

4.1 Considerations for deployment
We have described the problem of using whole-essay probabilistic
models to estimate the influence of sentences on trait scores.Making
this available to students in Revision Assistant involves solutions
to a variety of problems beyond the scope of this paper. We note
here several of the most relevant of these, as context for the use of
the influence computations in the live product.

Complementing the model-driven sentence selection is a large
body of comment texts written and curated by experienced writing
instructors. Revision Assistant chooses from a structured pool of
over a thousand such comments when presenting feedback to stu-
dents. Matching influential sentences to these comments involves
an additional suite of text processing tools (such as identifying
quotations and dialogue) and heuristic labeling (such as dividing
essays into structural components).

Revision Assistant starts with the estimated influence for each
trait/sentence pair, and must choose a limited set of comments to
show to a student. We therefore impose a variety of constraints,
motivated by pedagogical and user experience considerations, on
the number, specificity, and distribution of comments displayed on
any particular essay draft. This defines a constrained optimization
problem wherein we choose the optimal set of sentences such that
the influence of the selected sentences is maximized while the
constraints are respected as closely as possible.

Finally, the vast majority of students using Revision Assistant
do so in good faith, and attempt to perform the writing task posed
them. However, some students either misunderstand or intention-
ally veer from the task. Supervised scoring models should not be
expected to detect or accurately score such off topic or bad faith
essays, which will severely violate the distributional patterns of the
training set. For this reason, we deploy several anomaly detectors
to essays before scoring them or offering feedback. Anomalous
essay detection is a challenging learning task in its own right, and
beyond the scope of this paper, but it is an essential component of
any practical AWE system.

Figure 3: RankedProbability Skill Score for each prompt and
trait, comparing the OLR to NB and LEN (larger values indi-
cate larger increase over baseline). OLR is almost universally
better calibrated than both NB and LEN.

4.2 Evaluation
Standard baseline metrics for automated scoring, such as QWK,
rely on scored examples treated as ground truth. Since a lack of
sentence-level ground truth is central to our feedback problem for-
mulation, the performance of feedback models cannot be measured
with out-of-sample predictive accuracy. This necessitates a more
diverse set of metrics. Here we present a suite of evaluations rang-
ing from assumption checking and distributional characteristics
of predictions, to offline blind evaluation of sentence selection, to
observational metrics on live student usage of Revision Assistant.

4.2.1 Model characteristics. Feedback generation is a problem
closer to inference than prediction, and as such, the assumptions and
fit of the models have increased relevance. As presented in Section 2,
our predictive model acknowledges the ordinal categorical nature of
the essay scores.We generate feedback using realistic essay variants,
as we cannot assume that the true causal correlation structure of
language is reflected in our models. Finally, since we use small
differences between predicted distributions to estimate influence,
we choose an AES model that produces calibrated predicted score
distributions.

In pure score prediction, the maximum of the predicted distri-
bution is important but the shape of the distribution is otherwise
irrelevant. For instance, the Naive Bayes model performs well but
tends to predict degenerate distributions with a single score receiv-
ing a predicted probability of nearly 1. However, essaymodifications
rarely shift predictions by a whole score point, and our influence
computations consider the shape of the entire predicted distribu-
tion. We want it to be meaningful, not just have its maximum at
the right place.

The calibration of probabilistic predictions can be measured in a
variety of ways [15]. One of these, appropriate for discrete ordinal
predictions, is the Ranked Probability Score (RPS) [12]. ForN essays
and S possible score points,

RPS =
1
N

N∑
n=1

S∑
s=1

(Pns −Ons )
2 (4)

where Pns =
∑n
j=1 pjs is the predicted CDF and Ons is the empiri-

cally observed CDF (always a step function) for essay n. By using



Figure 4: Whole-essay judgements of sentence selection quality, with participants blind to the specific feedback algorithm.
The x axis scale runs from strongly preferring NB generated comments (-2) to strongly preferring OLR generated comments
(2). Scores from all annotators are averaged per essay.

the CDFs, this measure penalizes a prediction for placing probabil-
ity mass farther from the observed score. RPS is a proper scoring
rule, meaning that it is optimized by the predictions that match the
true generating distribution of the events under consideration.

Since the RPS depends on the distribution of the dataset as well
as the predictions, direct comparisons across datasets are not appro-
priate. Instead, we use the Ranked Probability Skill Score, the ratio
of the RPS of each algorithm to the RPS of a default algorithm. We
use as default the algorithm that always predicts the baseline prior
probabilities of each score. Figure 3 shows the RPSS values for our
OLR model compared to the NB and LEN baselines for each trait in
our example datasets. OLR is almost universally better calibrated
than both baselines.

We note that the calibration metric is not explicitly related to
feedback, and is in fact simply a measure of properties of the pre-
dictive models. Nevertheless, characteristics such as calibration are
important prerequisites for believable feedback performance.

4.2.2 Offline evaluations. The deployed feedback system in Re-
vision Assistant has many moving parts. To evaluate the influence
estimation specifically, it is helpful to remove as many of those ex-
traneous layers as possible. However, it is also difficult to evaluate
the influence values directly. There are no established rubrics for
hand scoring essays at the sentence level. Instead, we choose to
evaluate the set of 4 sentences chosen by our influence estimation
and feedback coordination systems. We do so with a blind com-
parative judgement task. The annotator sees the same essay on a
split screen. Sentences are highlighted in each copy of the essay
using one of the algorithms being compared. The trait and direc-
tion of influence for each highlighted sentence (“this is a strong
sentence for the Language trait”) are also displayed. The annotator
then chooses whether they strongly prefer or moderately prefer
one side, or consider the two comment sets equivalent. The two
algorithms being compared are shown on random sides for each

example, and the annotator is blind to which algorithm generated
which set.

We performed a small such annotation task with 50 example
essays and three Revision Assistant team members as annotators,
comparing NB based sentence selections to OLR based sentence
selections. The essay level results are shown in figure 4. We found
that the annotators tended to prefer the OLR based selections. We
also had the annotators indicate the quality of each individual com-
ment (on a 5 point Likert scale). Though the results are not included
here, we found that the OLR algorithm was slightly preferred on
the comment level, and the NB comments were more frequently
judged as extremely poor. Finally, we compared the essay level
judgements to the sentence level judgements. Though they were
strongly correlated, annotators did sometimes prefer a comment
set despite preferring the individual comments in the other. We
hypothesize that this indicates interactions between the comments
- for instance multiple highlights working well together or a lack of
diversity in highlights being judged as undesirable.

This offline comparative judgement task is helpful to us when
deciding which algorithms to deploy. However, performing such
an experiment at scale with trained, independent annotators would
be prohibitively expensive.

4.2.3 Live behavioral metrics. We deployed the OLR based pre-
diction and influence estimation described here to students in Oc-
tober 2016. Between 10/16 and 5/17, Revision Assistant gave scores
and feedback on over 937,000 valid drafts from more than 79,000
students. Though controlled efficacy studies of Revision Assistant
are still in progress, we can learn a lot from observational study of
these users’ behavior.

Students using Revision Assistant wrote an average of 7.7 drafts
per essay. 89% of students wrote at least two drafts, while 58% of
students wrote at least 4. After each draft, the students received
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Figure 5: Change in summed predicted score after N valid drafts, as compared to the first valid draft. Violin plots show the
mean and center quartiles as the thicker black bars and kernel density estimates as the blue regions. Percentages above each
plot indicate the fraction of essays with at least that many valid drafts.

predicted scores as well as feedback comments. In general, stu-
dents improved their score over the course of their revision process.
Summed across all essay traits, students improved their score only
slightly on their second draft (an average of 0.6 points). However,
after 7 drafts (nearly the mean number), students improved by an
average of 2.6 points. Twenty percent of students wrote at least
11 drafts, improving by an average of 3.2 points by that point. We
note that students would probably improve their writing by revis-
ing many times without feedback, but believe that the Revision
Assistant feedback is effective at encouraging revision and guiding
the student toward influential changes. We also note that these
score improvements are measured by our predictive algorithm, not
independent scorers. Even so, this indicates that the model-driven
feedback is eliciting edits that move essays toward higher predicted
scores – the purpose of influence estimation as defined here.

Revision Assistant gives students the option of rating comments
they receive as helpful or not helpful (see figure 1). Only about 8%
of the 3.5 million comments that we displayed to students were
marked in this way. The fraction of those marked as helpful is un-
even between positive valence comments (“this is a good example
of X”) and negative valence comments (’you need to improve this’).
Students overwhelmingly mark positive valence comments as help-
ful (88% helpful). We believe this to be largely driven by students
appreciating praise (as in [13]), and in general don’t see very many
interesting patterns in the marks on positive valence comments. In

contrast, negative valence comments are marked as helpful 72% of
the time. Though negative valence comments are marked as helpful
at a lower rate, we believe these marks are more indicative of the
helpfulness of the comment.

We observe that the fraction of comments marked as helpful
varies significantly across traits and prompts. We can use this in-
formation to draw attention to feedback models, comment texts, or
other system features that might need attention. More relevant to
the evaluation of our influence estimation process, after accounting
for trait effects, we observe a significant positive correlation of our
estimated influence value for a comment on whether that comment
was rated as helpful by the student (given it was rated at all). Figure
6 shows this relationship.

5 CONCLUSIONS AND NEXT STEPS
Automated Writing Evaluation tools such as Revision Assistant can
multiply the impact of dedicated teachers by providing more fre-
quent formative feedback to students and softening the potentially
adversarial interpretation of constructive criticism. Our ordinal
logistic regression essay scoring model achieves state of the art
predictive performance while preserving characteristics suitable for
a novel sentence influence estimation task. We have introduced a
model-driven influence estimation process that identifies sentences
within an essay that deserve feedback without any sub-essay-level
annotations. The automated feedback task does not lend itself to
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Figure 6: For negative polarity comments, ourmeasure of in-
fluence is significantly correlated with the percent of com-
ments rated as ’helpful’. Points show the percentage of com-
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values of width 1.5. Error bars show the 95% binomial pro-
portion confidence interval. The rise and dip in the middle
of the range are likely related to a discrete shift in our com-
ment coordination heuristics for different regions of the in-
fluence space.

single benchmark evaluations, so we have presented a diverse array
of evaluation techniques for our approach. Our behavioral metrics
indicate that Revision Assistant, driven by our influence estimation
method, generates automated feedback that is both well-received
by student writers and aligned with improving scores. Controlled
efficacy studies currently in progress will supplement these metrics.

Future work in the space of automated writing evaluation may
be informed by these results. We hope to see increased use of
learned models for solving problems in writing evaluation that
extend beyond score prediction. In the specific domain of influence
estimation, we expect that research in revision extraction will lead
to additional realistic methods of essay modification. Finally, we be-
lieve that additional gains could be made by combining the models
for a rubric’s traits. Trait scores tend to be highly correlated, and a
joint model might be able to better describe the shared and unique
components of writing, choosing feedback targets more specific to
each trait.
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